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The singularities of the general position which arise on the boundaries of stability domains of a linear, autonomous system of 
differential equations in a two- or three-dimensional parameter space are investigated. A constructive approach is proposed which 
enables one to determine the geometry of the singularities (the orientation in space, the magnitude of the angles, etc.) by 
constructing cones which are tangential to the stability domain using the first derivatives of the matrix operator of the system 
with respect to the parameters and its eigenvectors and associated vectors at the singular points of the boundary. Examples are 
presented. © 1999 Elsevier Science Ltd. All rights reserved. 

A linear autonomous system of differential equations )3 = Ay  where the matrix operator A depends 
smoothly on real parameters, is considered. The singularities of the general position, which arise 
on the boundaries of the stability domain in the two- or three-dimensional parameter space, are 
enumerated for these systems and they are described, apart from a smooth change in the parameters 
(diffeomorphism) [1]. 

A constructive approach is presented below which enables one to determine the geometry of the 
singularities by constructing cones that are tangential to the stability domain using the first derivatives 
of the matrixA with respect to the parameters and its eigenvectors and associated vectors at the singular 
points of the boundary. The method is based on the theory of perturbations of the eigenvalues of matrices 
which depend on parameters [2, 3] and the theory of the normal forms of families of matrices [1]. 
Problems on the stability of the equilibrium state in an electric arc circuit and the stability of the motion 
of a Ziegler double pendulum, loaded with a following force with two independent dissipation parameters 
are considered as examples. In the second problem, it is shown that the singularity which arises for the 
value of the critical force when no account is taken of dissipative forces, is "deadlock of an edge" 
according to the terminology of [1]. This singularity is reflected in the destabilization of the system by 
small dissipative forces and the absence of a critical load limit when the dissipation parameters tend 
to zero. The appearance of similar effects in the case of a singularity of a "break of an edge" type could 
also be expected. 

1. D E C O M P O S I T I O N  OF J O R D A N  BLOCKS 

We consider the eigenvalue problem 

Au = %u (1.1) 

whereA is an arbitrary real m-th order matrix, the elements of which aij(p) (i , j  = 1 . . . .  , m)  are smooth 
functions of the vector of the real parametersp = (Pl . . . . .  pn) r, )~ is an eigenvalue and u is an eigenvector 
of dimension m. 

We shall consider the change in the eigenvalue as a function of the change in the parameterspl , . . .  ,Pn. 
Suppose the number X~ is an eigenvalue of the matrixA(p0) whenp = P0. We now add the increment 
P = P0 + ee + d(e)e 2 to the vector of the parameters, where e is a small positive number and e and d(e) 
are, respectively, an arbitrary, but fixed, direction vector and an arbitrary, but fixed, vector function which 
depends smoothly on e. As a result, the matrixA is incremented, which is represented in the form of a series 

A(po + ee + d(It)l~ 2) = Ao + Ail~ + A2E 2 + ... 

aA '1 
, : ,  op, "j 

(1.2) 
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As a result of the perturbation of the parameter vector, the eigenvalue and the eigenvector are also 
incremented. According to the theory of perturbations of non-selfadjont operators [2], these increments 
have different representations depending on the Jordan structure of A0. 

1. In the case of the simple eigenvalue £0, the increments in the eigenvalue and the eigenvector are 
represented in the form of series in integral powers of e 

X = Z,o + Xqe + ~e2 + .... U=Uo+Wle+w=e2+. . .  (1.3) 

Together with the right eigenvector u0, when p = P0, we shall consider the left eigenvector u0 

u roAo = Lov r (1.4) 

and use the normalization condition 

voru 0 =1 (1.5) 

We substitute the expansions (1.2) and (1.3) into (1.1) and use Eqs (1.4) and (1.5). As a result, we 
obtain expressions for the first correction [2, 3] 

~,! = v O rAlu o = ~ Or uo 
s=l ~Ps es 

(1.6) 

On introducing the real, n-dimensional vectors r and k with components which are defined by the 
relations 

~A 
rS+ik s = v r  _-----u0, s=l,. . . ,n (1.7) 

where i is the square root of -1, we write (1.6) in the form 

~q = (r, e) + iCk, e) (1.8) 

where the brackets denote a scalar product in R n. The vectors r and k are the gradients of the real and 
imaginary parts of the eigenvalue ~v, calculated whenp = P0, respectively. It is then possible successively 
to determine the quantities wl, ),2, w2, etc. from the equations of the perturbation method. 

The complex conjugate quantities ).1 = (r, e) +_ i(k, e) correspond to the pair of complex 
conjugate eigenvalues ~ = a0 - ira0, respectively. On taking account of (1._3) and (1.8) in the neigh- 
bourhood of the pointp0, the expression for the complex conjugate pair ~, ~.takes the form 

~,, ~ = a 0 + (r, e)e +/[to 0 + (k, e)e] + o(e) (1.9) 

If ~.0 is a real number, then the vector k = 0. 
2. We will now consider the case of a repeated eigenvalue 7% with a second-order Jordan block. This 

means that, whenp = P0, the eigenvector u0 and the associated vector ul, which are determined from 
the equations 

Aouo = Z, oUo, AoUl = ~oUl + u o (1.10) 

correspond to the eigenvalue L0. 
For the left eigenvector and associated vector t) 0 and u 1, we have 

vrAo =Lov r ,  vlrAo =7%v r +o r (1.11) 

respectively. 
It immediately follows from Eqs (1.10) and (1.11) that the vectors u0, ul, o0, 01 satisfy the conditions 

U rouo =O, v rou, =vruo (1.12) 

As a result of the perturbation of the parameter vectorp = Po + ee + d(a)e 2, the matrixA undergoes 
the incremental change (1.2). In the multiple case, the eigenvalue, generally speaking, decomposes into 
I simple eigenvalues which, together with the eigenvectors corresponding to them, are represented in 
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the form of Newton-Puiseux series, containing terms with fractional powers eHl, j = 0, 1, 2 . . . . .  where 
l is the length of the Jordan chain [2]. In the case under consideration (I = 2), these expansions have 
the form 

Z, = k o + Z, le ½ + ~,2s + ~,as ~ + ... (1.13) 

U = U 0 + Wi E~ + W2E+ W3 E~ +.. .  

Substituting expansion (1.13) and (1.2) into (1.1) and using relations (1.10)-(1.12), we obtain 
expressions for the first corrections ~-1 and £2 in the form 

~, = :t:(u r A'u° ) Y2 (1.14) 
urul j 

~'2 = v r o A,u, +u r t ,  uo _ f f  r u, (1.15) 
D 0Tul 

Relations (1.13)-(1.15) hold if ooTA~uo * 0 (the "F" condition in [2]). Note that the eigenvectors u0 
and u0 are defined apart from arbitrary factors while the associated vectors ul, Ul are defined apart 
from additive terms ~u0 and 13u0 respectively, where cz and 13 are arbitrary constants. However, the 
quantities ~,1 and ~e in (1.14) and (1.15) are independent of this arbitrariness. 

Assuming the vectors u0 and Ul to be fixed, we introduce the following normalization 

uoru, = 1, uru.=O (1.16) 

which uniquely defines the vectors o 0 and t h. Expressions (1.14) and (1.15) are simplified in this case. 
We introduce the vectors fl, ql, f2, q2 with components which are defined by the relations 

OA 
fl "~+iq~=ur-~psu o, s = l  ..... n (1.17) 

l ( r O a  + v r 3 A  ] 
y~ + iq~ = - i  u o ~ u l  ap, 7p., 

Using these vectors, the splitting of the double eigcnvalue ~0 is described by the expression 

~" = ~o -+ { [(3~, e) + i(ql, e)]e} ~ + [(f2, e) + i(q2, e)]E + o(g) (1.18) 

If ~o is a real number, then the vectors ql = q 2  = 0. 
We will now investigate the decomposition of the triple eigenvalue ~0, corresponding to p = P0, with 

a third-order Jordan block. The Jordan chain corresponding to this case has the form 

AoU o = ~,oUo, Aou I = L0U 1 4" U0, Ao% = ~,oU2 + u I (1.19) 

For the left eigenvector and the left associated vectors, we have 

vffao =L0 u [ ,  urA0 =~,0 v r  + o r ,  vrAo=~,o or  +u r (1.20) 

respectively. 
The vectors us, oz are related by the orthogonality conditions 

and also by the equalities 

(1.21) 

These relations are easily proved by the direct use of the chains (1.19) and (1.20). 
Note that the eigenvectors u0 and u0 are defined apart from arbitrary factors, associated vectors ul, Ol 

are defined apart from the additive terms ~lu0 and 13~u0 and the vectors u2, o2 are defined apart from the 
additive terms a~ul ÷ a2Uo and 13101 ÷ 132Uo respectively, where % ~i (i -~" 1, 2) are arbitrary constants. 

u r u  2 =v ru,, v ru  2 =u i ru I =u ruo (1.22) 
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Assuming that the vectors Uo, ul, u2 are fixed, it is convenient to normalize the vectors t) o, th, 02 as 
follows: 

u0ru2 = 1, uru2=uru2=O (1.23) 

This normalization uniquely defines the sequence of vectors t~0, th, L)2. 
We will now describe the decomposition of the eigenvalue ~ into three simple eigenvalues. In this 

case, the expansions of the eigenvalues and the eigenvectors corresponding to them have the form [2] 

Z, = ~'0 + ~'l e)~ + Z'2 e'~ + Z, ae + ... (1.24) 

u = u0 + wle )~ + w 2 ~  + wag +... 

Substituting expansions (1.24) and (1.2) into Eq. (1.1) and equating the coefficients of like powers 
of~, we obtain the equations in the unknowns El, E2 . . . .  and Wl, WE . . . . .  Using (1.19)-(1.23), we find 
the first three coefficients Zl (i = 1, 2, 3) from these equations 

Xt =(U~AlUo) }~, ~,2 =vr  Alul +ur Alu° (1.25) 

These expressions hold subject to the condition that t)~4~u0 # 0 this case, the first relation of (1.25) 
defines three different complex values, after which ~.2 and ~.3 are uniquely defined. 

We now introduce the vectors hi and ti (i = 1, 2, 3) with components defined by the relations 

h( + it(" , r aa = " 0  ~ / ' / 0  

( aA +o aAo), " h~+it~= [ ~ u l  =1 ..... n (1.26) ap, ap., j 

(,, aA . + ra__A ol h~+it~= o T ~ U 2 * U l - - U  1 ap, ap, op, / 

Using these vectors, the decomposition of the third-order Jordan block in n-dimensional parameter 
space is described by the expression 

+ O(E), (1.27) 

R = [(/h, e) + i ( t  l, e)] )~ 

where the cube root R has three different complex values. If ~0 is a real number, the vectors ti = 0 
(i = 1, 2, 3). 

2. ONE- AND TWO-PARAMETER FAMILIES OF MATRICES A(p) 

Consider the linear autonomous system of differential equations 

= Ay (2.1) 

with the matrix operator A. It is well known that the trivial solution y - 0 of (2.1) is asymptotically 
stable if the real parts of all of the eigenvalues of matrixA are negative. If there is just a single eigenvalue 

for which Re~, > 0 then the system is unstable. The case when ReE = 0 for certain eigenvalues and 
Re~, < 0 for all the remaining eigenvalues corresponds to a boundary of the stability domain (BSD). 

We will consider a single-parameter family of matrices A(p), p ~ R. The boundary of the stability 
domain in the case of a general position is characterized by a simple eigenvalue k = 0 and a pair of 
simple complex conjugate eigenvalues k = _+i(o [1]. In the technical literature, these cases are referred 
to as divergence and flutter respectively. 
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According to (1.9), in the case of simple eigenvalues ~ in the neighbourhood of the BSD (Re~. = 0 
when p = P0) we have 

Re~, = r(p - Po) + o(Ip - pol) 

Stability and instability are therefore determined by the sign of the quantity r = Re(u~gA/i~puo).  For 
example, i f r  > 0, then, whenp < P0 (at least for values ofp which are close top0) Re~, < 0, and the 
system is asymptotically stable while, when p > P0, it is unstable. Note that, in the case of the general 
position, r ~: 0. 

In the treatment of a general two-parameter family of real matrices A(p), p e R 2, the BSD consists 
of smooth curves corresponding to a simple null eigenvalue or a pair of simple pure imaginary 
eigenvalues _io,  which transversally intersect one another at their end points. The vector of the 
normal r to these curves is defined by relation (1.7), where the vectors u0, o0 correspond to the eigenvalues 
k0 = 0 or ~ = +_.ico. It follows directly from (1.9) that the vector of the normal r lies in the instability 
domain. At the points of nonsmoothness of the BSD, the family of matrices A is characterized by 
the following Jordan structures (strata): F1(02), F2(0, __.io)), F3(---ioh, --.ito2), which respectively 
imply the existence of a double-zero eigenvalue with a second-order Jordan block, the existence of a 
simple zero eigenvalue and a pair of simple pure imaginary complex conjugate eigenvalues and, finally, 
the existence of two different pairs of pure imaginary complex conjugate eigenvalues [1]. 

Using the expansions (1.18), for the second-order Jordan block with ~) = 0, we have 

L = + ( ~ l , e ) E  + (f2,e)8+ 0(8) 

where the vectors fl and f2 correspond to ~o = O and are calculated using (1.17). In the case of the general 
position, fl and f2 are linearly independent. 

If e(fl, e) < 0 and (f2, e) < 0 for a fixed direction, then we obtain that ReE < 0 (stability) in the case 
of sufficiently small e. If, however, one of these inequalities has the opposite sign, then we have 
Re ~. > 0 (instability) for one of the eigenvalues in the case of sufficiently small e. 

In the subsequent reasoning we will make use of the concept of a tangential cone (TC) [4]. A tangential 
cone to a stability domain at a point on its boundary is the set of directions of the vectors along which 
a curve, which lies in the stability domain with the exception of the initial point, can be released from 
the given point. The TC is therefore a first approximation to the stability domain in the neighbourhood 
of a singular point. It is said to be non-degenerate if it cuts out a set of non-zero measure on the sphere. 
Otherwise, the TC is said to be degenerate. 

The TC at the point of a BSD which corresponds to the stratum FI(02) is written in the form 

Kv) = {e : (f~, e) ~< 0, (f2, e) ~< 01 (2.2) 

Using the expansions for simple eigenvalues (1.9), we construct the TC's at the points of the BSD 
corresponding to the strata F2(0, __.io)), F3(---io)l, ---io)2) in an analogous manner 

KF2 = {e : (ro, e) <~ O, (r, e) <~ 0} (2.3) 

KF3 = l e : (rl, e) <~ 0, (r2, e) ~< 0l 

where the vectors r0, r, rl, r2 correspond to the simple eigenvalues 0 _io, --+iol, ---io2, respectively. In 
the case of a general position, r0 and r as well as rl and rE are linearly independent. 

According to (2.2) and (2.3), the stability domain at the singular points F1, F2, F3 is wedged into the 
domain of instability and the angle of the wedge is less than n (Fig. 1, the stability domain is shown 
hatched). This fact reflects the well-known principle of the "fragility of the good" [1, 5] and the property 
of quasiconvexity of the stability domain [4]. 

Fig. 1. 
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Example. We will now consider the problem of the stability of the equilibrium state in an electric arc circuit which 
is successively switched on with a resistance R, a self-inductance L and a shunted capacitance C [6]. The differential 
equations of the system, which have been iinearized in the neighbourhood of the equilibrium state, have the 
form 

d~_ p,~+rl, drl_ ,~ rl (2.4) 
-~_l.-~.. .~ ~ l  c RC 

where {(t), rl(t) are the arc current and voltage and p is the resistance of the arc. 
System (2.4) depends on four parameters: the three positive quantities L, C and R and the parameter p, which 

can take both positive and negative values. Assuming the parameters L and C to be fixed, we will investigate the 
stability of system (2.4) in the plane of the parameters R and p. 

The characteristic equation of system (2.4) can be written in the form [6] 

,2 +(±+_p + '--(-p +,L 0 
~ RC L)  LCk R ) 

(2.5) 

At the point R = R., p = -R. (R. = 4(L/C)) the characteristic equation (2.5) has a double zero ~ = 0 which 
corresponds to a second-order Jordan block. Actually, using the notation Pl = R, P2 = P and 

- p l L  IlL ~ (2.6) 
A= - ] / C  -l/(nC) I 

we find, by formulae (1.10), (1.11) and (1.16), that 

According to (2.7), using these vectors and the matrix A from (2.6) we obtain 

and, hence, we find the TC (2.2) to the stability domain at the point R = R., p = -R.. Its angle is equal to n/2 
since the vectors fl and f2 are orthogonal. This result agrees with that obtained earlier in [6]: the BSD is described 
by the straight line p = -R, 0 ~< R ~< R. and the hyperbola p = -L/(RC), R, <~ R. 

3. T H R E E - P A R A M E T E R  F A M I L I E S  

Consider a smooth three-parameter family of real matricesA(p),p ~ ~3 in the general position. The 
BSD in the case of Eq. (2.1) in three-dimensional space is a smooth surface characterized by a single 
simple eigenvalue ~, = 0 or a pair of simple pure imaginary eigenvalues ~. = ___ i0~ [1]. The vector of 
the normal to this surface r is defined, as in the two-dimensional case, by (1.7) and lies in the instability 
domain. The singularities of the BSD are comprehensively covered by the following list [1]: "dihedral 
angle", "trihedral angle", "deadlock of an edge" and "break of an edge". 

A singularity of the "dihedral angle" type is associated with the strata Fl(02), F2(0, _ io)) and 
/73(- io)l, "4" i~2), which were considered in Section 2. The TC's in the stability domain for these 
singularities are determined by relations (2.2) and (2.3). 

. . . . . .  

Fig. 2. Fig. 3. 
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It is convenient to describe the TC KF1 by determining the vectors gl, g2, g3 which satisfy the 
conditions 

(gi, f / ) = - ~ o , i =  I, 2, 3 , j =  1,2 (3.1) 

where fii/is the Kronecker delta and fl, f2 are the vectors from (2.2). Equations (3.1) are solvable for 
the vectors gi since the vectors fl, f2 are linearly independent in the case of the general position. 

The vector g3 is directed along the edge of a "dihedral angle" and the vectors gl and g2 are tangential 
to the sides of this angle (Fig. 2). Using the vectors g~, g2, g3, the set (2.2) is described in the following 
manner in the three-dimensional case 

KFI ={e:e=Otgl+~g2+~lg3; ot, J3,ye R, ct~>0, g,~>O} (3.2) 

Substituting the expression e = agl + 13g2 + ~tg3 into (2.2) and using (3.1), we find that (fl, e) = -ct 
~< 0, (f2, e) = -[3 ~< 0, which proves representation (3.2). Similar representations for the TC's KF2 and 
KF3 can be obtained by using the vectors r0, r and rl, r2 respectively in (3.1) instead off1, f2; 

A singularity of the "trihedral angle" type is characterized by the following strata:  G3(0 ~, _ ion) is a 
double zero with a second-order Jordan block and a pair of simple pure imaginary complex conjugate 
e igenvalues ,  G4(0, ± it.ol, ± i¢02) is a simple zero and two pairs of different simple pure imaginary 
eigenvalues and Gs(± itol, ± i0)2, -- i¢.03) is three pairs of different pure imaginary eigenvalues [1]. Note 
that these structures differ from the strata F1, F2, F3 considered above in the presence of an additional 
pair of the ___ io type. By analogy with (2.2) and (2.3), the TC's to the stability domain for these cases 
are therefore written in the form 

Kc3 = {e : (fl, e) ~ 0, 

Kc4 = {e : (ro, e) <~ O, 

K~5 = {e : (r  I, e) <~ O, 

(f2, e) ~< 0, (r, e) ~< 0} 

(fi ,e)~ < 0, (r2,e)~< 0} 

(r 2, e) ~< 0, (r 3, e) ~< 0} 

(3.3) 

where the vectors r and ri correspond to the simple pairs ± io~ and ± icol (i = 1, 2, 3) and are determined 
from relations (1.7), the vector r 0 corresponds to a simple zero and the vectors fl and f2 correspond to 
a double zero with a second-order Jordan block and are found from (1.17). 

The sets (3.3) are determined by three vectors and describe a trihedral angle (Fig. 3), which lies in 
a closed half-space. As in (3.1), it is possible to set up the vectors gl, g2 and g3 in accordance with the 
three vectors defining the trihedral angle, ra, r2, r3 in Kcs, for example, using the formulae 

(gi, ri) = -~ij, i, j = 1, 2, 3 

The vectors gi are tangential to the edges of the trihedral angle. Using these vectors, the set KG5 is 
described as follows: 

Ka5 ={e:e=txg ,  +l~g 2 +Yg3; ot,~,), ~> 0} (3.4) 

Similar representations can also be obtained for/(63, Kc4. 
Note that the vectors defining the dihedral and trihedral angles are linearly independent in the case 

of the general position. 
A "deadlock of an edge" singularity is characterized by a stratum G2((+-- io~)2), that is, by the presence 

of a pair of double pure imaginary complex conjugate eigenvalues with second-order Jordan blocks. It 
is well known that the stability domain in the neighbourhood of this singularity, apart from a smooth 
change of coordinates (diffeomorphism), has the form [1] 

z+ I Re x/'x-'~ l< 0 (3.5) 

The TC to the stability domain (3.5) at the singular point of the boundary G2(x = y = z = 0) is 
degenerate and is the plane angle 

K°2 = { e =  (e l ,e2 ,e3):e l  ~< 0, e 2 = 0 ,  e3 ~< 0} 

Note that the singularity G2, which is a "deadlock" of the edge F3, is formed when two simple 
eigenvalues ioa and io32, corresponding to F3, collide. 

We will now calculate the TC for this singularity in the general case. Using the expansions (1.18) for 
the second-order Jordan block with L0 = ion, we have 
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~, = i¢o + [(J~, e) + i(ql, e)] ~ gY2 + [(f2, e) + i(q 2, e)]g + o(1~) (3.6) 

where the vectors fl, ql,f2, q2 correspond to ~.0 = io) and are calculated using (1.17). An expansion for 
the complex conjugate quantity with ~ = -ico can be obtained by taking the complex conjugate in (3.6). 
If (ql, e) ~ 0 or (]1, e) > 0 in the expression under the square root sign in (3.6), then one of the eigenvalues 
(3.6) has a positive real part (instability) for sufficiently small e. In the case when (fl, e) ~< 0, 
(ql, e) = 0, the second term of the expansion is a pure imaginary number and, consequently, when 
(fz, e) < 0 and for sufficiently small e, we have Re ~. < 0 (stability) and, when 0c2, e) > 0, we obtain 
Re g > 0 (instability). Hence, the TC to the stability domain at the singular point of the boundary G2 
is a plane angle and has the form 

Kc2 = {e : (fl, e) ~< 0, (f2,e) ~< 0, (ql, e) = 0} (3.7) 

By determining the vectors gl, g2 which satisfy the conditions 

(g i , f j )=-5# ,  (gi,ql)=O, i , j= l ,2  

we write the set (3.7) in the following manner 

Kc2={e:e=otgt+flg2; tx, I] ~> 0} (3.8) 

where gl and g2 are directed along the sides of the plane angle KG2 and gl is a vector which is tangential 
to the edge F 3 of the stability domain (Fig. 4). 

Note that the vectors fl, f2, gl are linearly independent in the case of the general position. 

4. BREAK OF AN EDGE 

A singularity of the "break of an edge" type is characterized by a s t ra t rum GI(0 3) with a triple zero 
eigenvalues of the operatorA(P0 ) with Jordan chain (1.19). We now construct a versal deformation of 
the matrixA0 = A(p0). It is determined by the family of matricesA'(p'), which depend smoothly on the 
vector of the parameters such that any smooth familyA(p), p ~ R 3 (A(P0) = A0) in the neighbourhood 
ofp = P0 can be represented in the form [1] 

A(p) = C(p)A'(cp(p))C -j (p) (4.1) 

where C(p) is a family of non-degenerate matrices which depend smoothly onp andp' = q~(p) is a smooth 
mapping from the neighbourhood of the pointp0 in the space R ° into the neighbourhood of the origin 
of coordinates of the spacep' ~ R a, cpl(p0) = . . .  = ~Pa(P0) = 0. Aversal deformation with the minimum 
possible number of parametersp'l . . . . .  p~ is called a miniversal deformation. A minivers al deformation 
of the matrixA0 can be chosen to be equal to a block-diagonal family of the form [1] 

A'(p') = A'(O) + B(p') (4.2) 

In this expression, A'0 is the Jordan upper triangular matrix of the operator A 0 and B(p') is a block- 
diagonal matrix, the blocks of which correspond to the eigenvalues of the matrixA0. The first block of 
the matrixA'(p'), which corresponds to the triple zero (0~), can be chosen in the form 

IN'l° It0 0 0 ! Dt(p')= 0 1 + 0 0 0, (4.3) 
o Oll lip; pz 

and the other blocks correspond to the eigenvalues of the matrixA0 with negative real part. 
By virtue of relation (4.1), the characteristic equations for the matrices A(p) and A'(p'), p' = tp(p) 

are identical. By virtue of its block-diagonal structure, the stability of the matrix A'(p') in the 
neighbourhood of the pointp' = 0 is determined by the first block (4.3). The characteristic equation 
for it has the form ~3 _p~X2 _p~.  _p~ = 0. The stability domain in the space of the parameterspl, p~, 
p~ is determined using the Routh-Hurwitz conditions 

p~ + p~p~ > O, p~' < O, p~ < O, p] < 0 (4.4) 
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z , 

Fig. 4. Fig. 5. 

This domain is represented in Fig. 5. We immediately find from (4.4) that the cone which is tangential 
to the stability domain of the familyA'(p') at the pointp' = 0 is degenerate and is defined by the relations 

el=O, e ~ < 0 ,  e ; ~ < 0  (4.5) 

We will calculate the vectors hl (i = 1, 2, 3), which describe the decomposition of the third-order 
Jordan block DI(0), by finding the eigenvectors and associated vectors u /and  v/(i = 0, 1, 2) when 
p'  = 0 and using formula (1.26). As a result, we obtain 

K = ( 1 , o , 0  . . . .  0) r ,  . . . .  0) r ,  h =(0,0,1,0 .. . . .  0) r 

Using these vectors, the TC (4.5) can be written in the form 

Kbt ={e'=(e~ ..... e~): (h~,e')=0, (h~,e ')~ < 0, (h~,e')~< 0} (4.6) 

We will now determine the TC for the familyA(p). For this purpose, we find the relation between 
the vectors h~ and hj (] = 1, 2, 3). Suppose u~, v[ (i = 0, 1, 2) are the right and left eigenvectors and 
associated vectors of the matrixA'(0), corresponding to the triple eigenvalue ~ = 0 and which satisfy 
the normalization conditions (1.23). Then, using (4.1), we find that the eigenvectors and associated 
vectors ui, vi (i = 0, 1, 2) of the matrixAo are related with u[, v[ as follows: 

u f = C(po)u ~, v/r = v~rc-i(po), i = 0,1,2 (4.7) 

We differentiate expression (4.1) with respect to Pi and find the value of the derivative when p = P0, 
p '  =  Co0) = 0 

aA ~C A,C.. I . . . .  a C  --I . d ,,~ aA'  ,-.--i, aq}j = -rt.~t --~----t 2.,tt.~--7-t. )-~---, i=1,2,3 (4.8) 
aPi aPi OPi j=l Opj oPi 

We multiply both sides of equality (4.8) on the left by v~'and on the right by u0. As a result, we have 

~ ~ ~ • / ~ r /  I 
- z , - - ~ - - i  o ~"TUo/ ,  i = 1 , 2 , 3  (4 .9)  VO aPi ttO j=l oPi ~ opj ) 

Here, relations (4.7) andA'(0)u'0 = 0, V'orA'(O) = 0 have been used. From (4.9), we therefore obtain 
the relation between the vectors hi and hl 

hrl=h~r[acplap]; [aqHap]=[a%lap]], i=1  ..... d, j=1 ,2 ,3  

The fact that this relation also holds in the case of the vectors h2 and h 3 can be proved in a similar 
way. Expressions (4.7) and (4.8) and the identities 

r a c ~ l  . r ~ a c  -I = v r a ( c c - l ) u j  
V s _-------I.., U .  'q"'Ys L , ~ U .  ~ 0~ s,j  = O,1 

~pi J api J 'pi 

are used in the proof. 
Thus, the vectors h~ and h's are related by the equation 
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h r = h',r[a~plap], s = 1,2,3 (4.10) 

We now find the relation between the vectors of the directions e and e' from the TC in the spaces 
R 3 and N d, respectively 

, _a lp [  d a d, d 
- . - . 7 - - - ' 7 - -  ~ 7 - -  j, i=1  ..... d, j=1 ,2 ,3  

e i -  de j=lopj a£ j=lOpj 

Consequently 

e' = lot o / Ople (4.11) 

Multiplying both sides of equality (4.1) by e and using (4.11), we obtain 

h.r h h'r e" = .~ , s = 1 , 2 , 3  (4 .12)  

Using (4.6) and (4.12), we find the TC to the stability domain for the singularity GI(03) in the form 

Kcl ={e:(hl,e)=O, (h2,e)~< 0, (h3,e)~< 0 } (4.13) 

The TC/261 is degenerate and is a plane angle. We recall that the vectors hi, h2, h3, which define it, 
are calculated from formula (1.26) using the eigenvectors and associated vectors corresponding to the 
triple zero. The vectors hi, h2, h3 are linearly independent in the case of the general position. 

Note that the RC lies in a plane in which the expansion (1.27) of the triple zero in powers of 81/3 
does not hold, since V~AlUo = (hi, e) = 0 in this plane. Hence, in this case, the TC cannot be found by 
the method which was used to study other singularities. For this reason, an approach connected with 
the method of normal forms has been used here. 

5. E X A M P L E  

Consider a Ziegler double pendulum with two independent dissipation parameters [7]. It is a system with 
two degrees of freedom % and q~2, consisting of two weightless sections of equal length I carrying point masses 
ml = 2m and m2 = m and loaded at the free end with a following force P. It is assumed that the hinges of the 
system are viscoelastic and that moments 

MI = ktpl +Cl~l, /142 = k(IP2 - tPl ) + c2 (~2 - (01) 

arise in them. 
The constants k, cl, c2 characterize the elastic and dissipative properties of the hinges. The linearized equations 

of the oscillations of the pendulum about the equilibrium position tO1 = ¢P2 = 0 have the form [7] 

3~1 +/P2 +(5'1 +5'2)(D1-5'2(I)2 +(2-  p)% +(p-  l)(P2 = 0 (5.1) 

~1 +~2 --5'2ti)1 +5,2~02--q)l +(I)2 = 0 

where the following dimensionless quantities have been used: the dissipation parameters "/1 = Cl/'~(kml2), ~2 = 
c2/~/(km/2), the force p = P1/k and the time x = tq(k/ml2). By introducing the variables ~3 ---- tPl and ~4 = ~ ,  we 
can write Eqs (5.1) in the form 

= Atp, tp=(%,tp2jp3,94) T (5.2) 

I~ 0 1 0 
0 0 1 

A= p12_3/2 l-p12 -5'I/2-T2 Y2 

~5/2-P/2 p /2 -2  5,1/2+2"/2 -25, 2 

(5.3) 

We shall investigate the singularities of the BSD of system (5.2), (5.3) in the space of the three parameters 71, 
"/2,P. The roots of the characteristic equation of system (5.2), (5.3) when "/1 = "/2 = 0 are determined by the expression 
[7, 8] 

~,2 = ( p _  7/2 + A)/2,  A = ~ / (p -  7~)2 _ 2 (5.4) 
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Fig. 6. 

Consequently, whenp  e [0, P0) (P0 = 7/2 - ~/2), there are two different pairs of complex conjugate imaginary 
eigenvalues which correspond to a "dihedral angle" (F3) singularity. A pair of complex conjugate imaginary 
eigenvalues with a Jordan chain (1,10) corresponds to the value P0 which implies a "deadlock of an edge" (G2) 
singularity. Hence, the segment 

't~---'¢2 =0, pe[0,p0]  (5.5) 

is an edge of the BSD with a deadlock at the pointp = P0 (Fig. 6). 
At an internal point of the segment (5.5), the TC KF3(p) is determined from (2.3). The vectors rl and r2, calculated 

using formulae (1.7) for the matrixA from (5.3) are equal to 

rl, 2 (p) = (!-(3- 2p)/(16A)- ~ ,  +(19-  6p)/(8A)- ~ , 0 )  T (5.6) 

where the plus sign refers to rl and the minus sign refers to r2. As p increases from zero, the angle between the 
vectors rl and r2 (equal to the difference between rc and the magnitude of the "dihedral angle") increases and, 
whenp ~ P 0 ,  it attains a value of n and the moduli of the vectors rl and r2 tend to infinity, since A = 0 whenp = 
P0. Hence, the TC is degenerate, changing into the cone Kc2 of a "deadlock of an edge" at the pointp  = P0 (Fig. 
6). The TC K62 is defined in (3.7), where the vectors fl, ql,f2 are calculated using formulae (1.17) and, in the case 
of the matrix (5.3), take the form 

• /~ =(0,0,1) r ,  ql = ( I , - 4 , - 5 " ~ , 0 )  T, f2 = ( - 1 , - 6 , 0 )  r 

apart from a positive factor. 
This TC can be written in the form 

Kc2 ={(el,e2,e3):ei = ( 4 + 5 ~ ' ) e  2, e 2 ~>0, e 3 <~0] 

In the space of the parameters (71, ~2, P), it is a plane angle. 

(5.7) 

For each fixed value of the parameters ('/1, "/2), the critical value of the load Per is determined as the smallest 
value o fp  for which the system becomes unstable. We consider the dissipation parameters in the form Yl = elc, Y2 
= e2e, where e is a small positive number. Since the segment (5.5) is an edge of the BSD, the critical loading limit 

p~ -- lim per(~[l, ~/2) when e ~ 0 for a fixed direction (el, e2) is equal to the value o fp  at which the vector e = (el, 
e2, 0) emerges from the TCK~3(p) (asp increases from zero). In this case, the condition (rl(p~), e) = 0 or (r2(p~), 
e) = 0 is satisfied. For example, when Yl = e, Y2 = 0, we have e = (1, 0, 0),p~ = 2, r2(2) = (0, -120, 0), (r2(2), e) 
= 0. It is clear from this that the value of the critical loading limitp~ is different for different directions (el, e2). 
This limit is less thanp0 for all (el, e2) * c(4 + 5~/(2), 1) (c > 0). When (el, e2) = c(4 + 5x/(2), 1), we havep~ = 
P0- This is related to the fact that the directions (4 + 5~/(2), 1, ct) when a <~ 0 belong to the TC Kc2 from (5.8). 

The closing of the "dihedral angle" at the point of a "deadlock of an edge" singularity geometrically interprets 
the phenomenon of the destabilization of a non-conservative system by small dissipative forces and the indeterminacy 
of the critical load [7, 8]. We could expect similar effects to occur in the case of other systems with singularities in 
the BSD of a "deadlock of an edge" type and a "break of an edge" type. 
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